

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0258 of 10 May 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

contains

This European Technical Assessment is

This European Technical Assessment

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice

Bonded anchor for use in concrete

Stanley Black & Decker Deutschland GmbH Richard-Klinger-Straße 11 65510 Idstein DEUTSCHLAND

Herstellwerk 1 Herstellwerk 2

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-13/0258 issued on 11 May 2015

European Technical Assessment ETA-13/0258

Page 2 of 20 | 10 May 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-13/0258

Page 3 of 20 | 10 May 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system AC100-PRO, AC100-PRO Nordic or AC100-Pro Ice" is a bonded anchor consisting of a cartridge with injection mortar AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 / C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply..

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-13/0258

Page 4 of 20 | 10 May 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

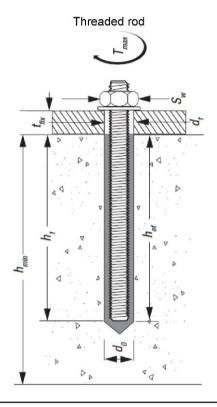
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

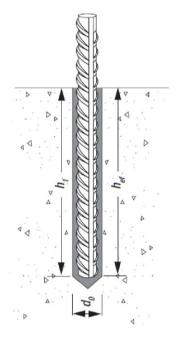
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 10 May 2016 by Deutsches Institut für Bautechnik

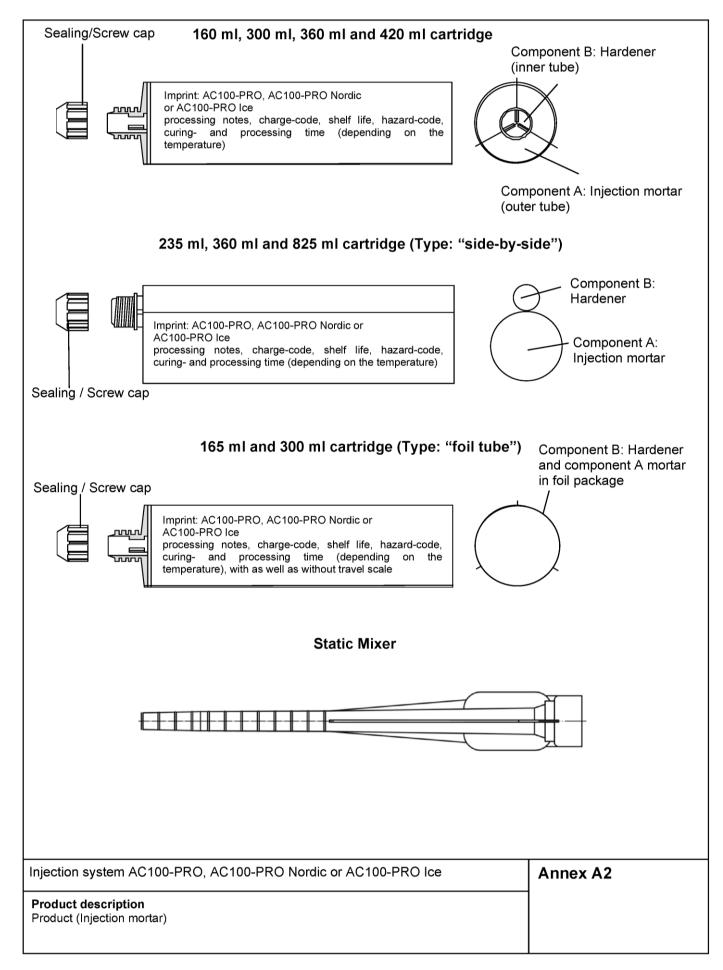
Uwe Bender Head of Department beglaubigt: Baderschneider



Threaded rod M8, M10, M12, M16, M20, M24, M27 and M30 with washer and nut

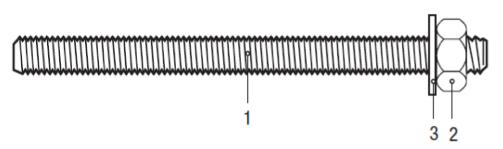


Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28 and \varnothing 32


Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice

Annex A1

Product description


Product and Installation

Part	Part Designation Material							
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999 or								
Steel, hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009								
1	Anchor rod	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8 acc. EN 1993-1-8:2005+AC:2009 A ₅ > 8% fracture elongation, f _{uk} = f _{ub} f _{yk} = f _{yb}						
2	Hexagon nut EN ISO 4032 :2012	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) Property class 5 (for class 5.8 rod) Property class 8 (for class 8.8 rod) EN ISO 898-2:2012						
3	Washer EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised						
Stain	less steel A4							
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009 $A_5 > 8\%$ fracture elongation, $f_{uk} = R_{m,min}$ $f_{yk} = R_{p0.2,min}$						
2	Hexagon nut EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009						
3	Washer, EN ISO 887, EN ISO 7089, EN ISO 7093, or EN ISO 7094	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005						
High	corrosion resistance steel HCR							
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009 $A_5 > 8\%$ fracture elongation, $f_{uk} = R_{m,min}$ $f_{yk} = R_{p0.2,min}$						
2	Hexagon nut EN ISO 4032 :2012	Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009						
3	Washer EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005						

Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex A3
Product description Materials (Threaded rod)	

Table A2: Material (Rebar)

- Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2009+AC:2010 Rip height of the bar shall be in the range 0,05d≤h≤0,07d
- (d: Nominal diameter of the rebar, h: Rip height of the bar)

Rei	inforcing bar	
1	Rebar according EN 1992-1-1:2009+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex A4
Product description Materials (Reinforcing bar)	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: Threaded rod M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: Threaded rod M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Uncracked concrete: Threaded rod M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: Threaded rod M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete.
- Flooded holes (not sea water) for drill diameters d₀≤ 18 mm.
- · Hole drilling by hammer drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex B1
Intended use Specifications	

Table B1: Installation parameters for threaded rod

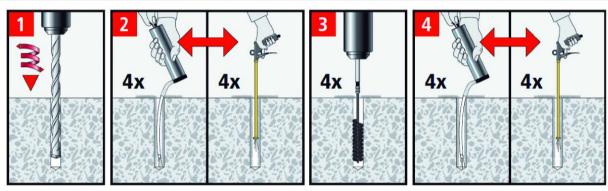
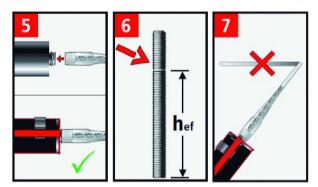

Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm]	10	12	14	18	24	28	32	35
Effective anchorage depth -	h _{ef,min} [mm]	60	60	70	80	90	96	108	120
Effective afficionage deptif	h _{ef,max} [mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm]	Ø	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm]	12	14	16	20	26	30	34	37
Torque moment T _{ins}		10	20	40	80	120	160	180	200
Thickness of fixture -	t _{fix,min} [mm]	0							
Thickness of fixture =	t _{fix,max} [mm]	1500							
$\begin{array}{ll} \mbox{Minimum thickness of} \\ \mbox{member} & \mbox{$h_{\rm min}$ [mm]} \end{array}$			_{ef} + 30 m 2 100 mr			ı	h _{ef} + 2·d)	
Minimum spacing s _{min} [mm]		40	50	60	80	100	120	135	150
Minimum edge distance c _{min} [mm]		40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d₀ [mm]	12	14	16	18	20	24	28	32	35	37
Effective anchorage depth	h _{ef,min} [mm]	60	60	70	75	80	90	96	100	112	128
Ellective alichorage depth	h _{ef,max} [mm]	160	200	240	280	320	400	480	480	540	640
Diameter of steel brush	d₅ [mm]	14	16	18	20	22	26	30	34	37	40
Minimum thickness of member	h _{min} [mm]	$h_{ef} + 30 \text{ mm}$ $\geq 100 \text{ mm}$ $h_{ef} + 2 \cdot d_0$									
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	120	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	120	125	140	160

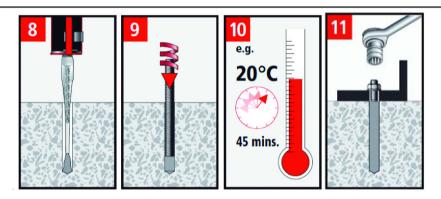
Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex B2
Intended use Installation parameters	


- Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2).
- Before cleaning remove standing water out of the drill hole. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B5) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper than 240 mm, compressed air (min. 6 bar) must be used.

- Check brush diameter (Table B6) and attach the brush to a drilling machine or a battery screwdriver. Starting from the bottom or back of the bore hole, brush the hole with an appropriate sized wire brush > d_{b,min} (Table B6) a minimum of four times.

 If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B6).
- 4. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B6) a minimum of four times. If the bore hole ground is not reached an extension shall be used.


The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper than 240 mm, compressed air (min. 6 bar) **must** be used.

- 5. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.
 - For every working interruption longer than the recommended working time (Table B3 or B4) as well as for new cartridges, a new static-mixer shall be used.
- 6. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex B3
Intended use Installation instructions	

- 8] Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation in bore holes larger than ∅ 20 mm a piston plug and extension nozzle (Annex B6) shall be used. Observe the gel-/ working times given in Table B5. Injecting the mortar in with water filled drill holes is allowed for drill diameters smaller than 18 mm.
- Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.
 The anchor should be free of dirt, grease, oil or other foreign material.

Be sure that the anchor is fully seated at the bottom of the hole that the annular gap is completely filled with mortar and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application shall not be loaded and has to be renewed.

- 10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 or B5).
- 111 After full curing, the add-on part can be installed with the max. torque moment (Table B1) by using a calibrated torque wrench.

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice

Intended use
Installation instructions (continuation)

Annex B4

Table B3: Minimum curing time AC100-PRO

Conci	Concrete temperature ¹⁾ Gelling- / working time			Minimum curing time in dry concrete ³⁾
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾
-5 °C	to	-1°C	90 min	14 h
0 °C	to	+4°C	45 min	7 h
+5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+19°C	15 min	80 min
+ 20 °C	to	+29°C	6 min	45 min
+ 30 °C	to	+34°C	4 min	25 min
+ 35 °C	to	+39°C	2 min	20 min
	≥ +40 °C		1,5 min	15 min

¹⁾ Cartridge temperature <u>must</u> be between +5°C to +40°C
2) Cartridge temperature <u>must</u> be at min. +15°C
3) In wet concrete the curing time <u>must</u> be doubled

Minimum curing time Table B4: AC100-PRO Nordic or Ice

Concr	ete tempe	rature ¹⁾	Gelling- / working time	Minimum curing time in dry concrete ²⁾
-20 °C	to	-16°C	75 min	24 h
-15 °C	to	-11°C	55 min	16 h
-10 °C	to	-6°C	35 min	10 h
-5 °C	to	-1°C	20 min	5 h
0 °C	to	+4°C	10 min	2,5 h
+5 °C	to	+9°C	6 min	80 min
	≥ + 10 °C		6 min	60 min

¹⁾ Cartridge temperature <u>must</u> be between -20°C to +10°C 2) In wet concrete the curing time <u>must</u> be doubled

Annex B5

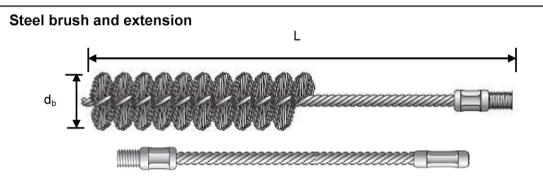


Table B5: Parameter cleaning and setting tools

Threaded	Rebar	Drill bit	Brush d nominal	iameters minimum	Piston plug
rod		Ø d₀	d _b	d _{b,min}	denom. (Ø)
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
M8		10	12	10,5	-
M10	8	12	14	12,5	-
M12	10	14	16	14,5	-
	12	16	18	16,5	-
M16	14	18	20	18,5	-
	16	20	22	20,5	-
M20	20	24	26	24,5	#24 (22)
M24	24	28	30	28,5	#28 (27)
M27	25	32	34	32,5	#28 (29)
M30	28	35	37	35,5	#35 (34)
	32	37	40	37,5	#35 (36)

Hand pump (volume 750 ml)
Drill bit diameter (d₀): 10 mm to 20 mm

Recommended compressed air tool (min 6 bar)

Drill bit diameter (d₀): 10 mm to 37 mm

Piston plug for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 37 mm

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex B6
Intended use Cleaning and setting tools	

Anchor	size threa	aded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Steel fa	ilure													
Charact	eristic tens	sion resistance	$N_{Rk,s}$	[kN]				As						
			N _{Rk,s,seis}	[kN]				A _s	A _s ·f _{uk}					
		t and concrete cone												
Charact	1	nd resistance in non-ci	acked con		5		·							
r nd ete	Temp. ra	nge I: 40°C/24°C	τ _{Rk,uncr}	[N/mm²]	11	13	13	13	13	12	11	9,5		
dry and wet concrete	Temp. ra	nge II: 80°C/50°C	τ _{Rk,uncr}	[N/mm²]	8,0	9,5	9,5	9,5	9,5	9,0	8,0	7,0		
p 8	Temp. ra	nge III: 120°C/72°C	τ _{Rk,uncr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,0	5,5	5,0		
<u> </u>	Temp. ra	nge I: 40°C/24°C	τ _{Rk,uncr}	[N/mm²]	8,0	3,0 9,5 9,5 9,5								
flooded bore hole	Temp. ra	nge II: 80°C/50°C	τ _{Rk,uncr}	[N/mm²]	6,0	7,0	7,0	7,0	1	Not adn	nissible			
우요도	Temp. ra	nge III: 120°C/72°C	τ _{Rk,uncr}	[N/mm²]	4,5	5,5	5,5	5,5	1					
Charact	teristic bon	nd resistance in cracke	d concrete	C20/25		•								
	Tomp ro	nge I: 40°C/24°C	τ _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5		
wet	remp. ra	nge I: 40°C/24°C	τ _{Rk,seis}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5		
dry and wet concrete	Temp. ra	nge II: 80°C/50°C	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,		
y a	8		τ _{Rk,seis}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1		
ਰ	Temp. ra	nge III: 120°C/72°C	τ _{Rk,cr}	[N/mm²] [N/mm²]	2,0 1,3	2,5 1,6	3,0 2,0	3,0 2,0	3,0 2,0	3,0 2,1	3,5 2,4	3,		
			τ _{Rk,seis} τ _{Rk,cr}	[N/mm²]	4,0	4,0	6,0	6,0	2,0	Ζ, Ι	2,4			
ore	Temp. ra	nge I: 40°C/24°C	τ _{Rk,seis}	[N/mm²]	2,5	2,5	3,7	3,7	1					
ded bo	Taman ra	nao II. 90°C/E0°C	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,5	4,5	5					
flooded bore hole	Temp. ra	nge II: 80°C/50°C	τ _{Rk,seis}	[N/mm²]	1,6	1,9	2,7	2,7	Not admissible					
l loc	Temp. ra	nge III: 120°C/72°C	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,5	3,5						
			τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0						
Increasi	ng factors	for	C30/37		-			1,0						
	cked concr		C40/50					1,0						
			C50/60		1,10									
Factor a	ccording to	o Non-cracked concrete			10,1									
	1992-4-5	Cracked	- k ₈	[-]	7,2									
Section	6.2.2.3	concrete												
Concre	te cone fa	ilure												
Factor a	ccording to	Non-cracked	k _{ucr}					10	.1					
CEN/TS	1992-4-5	concrete Cracked	, , doi	[-]					, -					
Section	6.2.3.1	concrete	k _{cr}					7,	2					
Edge dis	stance		C _{cr,N}	[mm]				1,5	·h _{ef}					
Axial dis			S _{cr,N}	[mm]				3,0						
	g failure		-37,14	[]				-,•						
- pinting	y landie				Г			(h)					
Edge dis	stance		C _{cr,sp}	[mm]			1,0 ⋅ h _{ef} ±	≤ 2 · h _{ef} 2,	$5 - \frac{h}{h_{ef}} \le 1$	2,4 · h _{ef}				
Axial dis	tance		S _{cr,sp}	[mm]				2·c	0.7					
Installati	ion	dry and wet concrete	$\gamma_2 = \gamma_{inst}$		1,0				1,2					
safety factor flooded bore hole $\gamma_2 = \gamma_{inst}$						1	,4			Not adn	nissible			
njectior	n system <i>i</i>	AC100-PRO, AC10	D-PRO No	ordic or AC	100-PR	RO Ice			Anne	x C1				
Perform Applicat		readed rod												
hhiloat		les for tension loads						- 1						

Table C2: Characteristic	resistanc	e value	s for th	readed	d rods ı	under s	shear I	oads					
Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30			
Steel failure without lever arm													
Characteristic tension resistance	$V_{Rk,s}$	[kN]	0,5⋅A _s ⋅f _{uk}										
Characteristic terision resistance	$V_{Rk,s,seis}$	[kN]	0,35·A _s ·f _{uk}										
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1													
Steel failure with lever arm													
Characteristic bonding resistance	[Nm]				1,2·W	el·fuk							
Characteristic bending resistance	M ⁰ _{Rk,s,seis}	[Nm]		N	o Perforr	mance D	etermine	d (NPD))				
Concrete pryout failure													
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]				2,0)						
Installation safety factor	$\gamma_2 = \gamma_{\rm inst}$					1,0)						
Concrete edge failure													
Effective length of anchor	I _f	[mm]	mm] $I_{f} = \min(h_{ef}, 8 d_{nom})$										
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Installation safety factor	$\gamma_2 = \gamma_{inst}$					1,0)						

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex C2
Performances Application with threaded rod Characteristic values for shear loads	

Ancho	r size re	einford	ing bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø 20	Ø 24	Ø 25	Ø 28	Ø32	
Steel f																
Charac	teristic t	tensior	resistance	N _{Rk,s}	[kN]						·fuk					
			nd concrete co	N _{Rk,s,seis}	[kN]	A _s ·f _{uk}										
			esistance in non			220/2										
	T_		l: 40°C/24°C		[N/mm²]	11	13	13	13	13	13	11,5	11,5	10,5	9,0	
y and wet ncrete	Temp.		II: 80°C/50°C	τ _{Rk,uncr}	[N/mm²]	8,0	9,5	9,5	9,5	9,5	9,5	8,5	8,5	7,5	6,5	
dry and wet concrete	Tomp.		III: 120°C/72°C	τ _{Rk,uncr}		5,5	6,5	6,5	6,5	6,5	6,5	6,0	6,0	5,0	4,5	
	Tomp.			τ _{Rk,uncr}	[N/mm²]	_	9,5	9,5	9,5	9,5	6,5	6,0	6,0	5,0	4,5	
flooded bore hole	Tomp.		I: 40°C/24°C II: 80°C/50°C	τ _{Rk,uncr}	[N/mm²] [N/mm²]	8,0 6,0	7,0	7,0	7,0	7,0		Not	admiss	iblo		
일 요 가	Temp.			τ _{Rk,uncr}	[N/mm²]	4,5	5,5	5,5	5,5	5,5		NOU	aums	SIDIC		
Charac	Temp. range III: 120°C/72°C TRK,uncr [N/mm²] 4,5 5,5															
Onarac				τ _{Rk,cr}	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
vet e	Temp. range I: 40°C/24°C		τ _{Rk,seis}	[N/mm²]	2,5	3,1	3,7	3,7	3,7	3,7	3,7	3,8	4,5	4,5		
dry and wet concrete	Temp	range	II: 80°C/50°C	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
y a				τ _{Rk,seis}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,7	2,8	3,1 3,5	3,1 3,5	
ਰ	Temp.	range	III: 120°C/72°C	τ _{Rk,cr} τ _{Rk,seis}	[N/mm²] [N/mm²]	2,0 1,3	2,5 1,6	3,0 2,0	3,0 2,0	3,0 2,0	3,0 2,0	3,0 2,0	3,0 2,1	2,4	2,4	
45	Temp	rance	I: 40°C/24°C	τ _{Rk,cr}	[N/mm²]	4,0	4,0	6,0	6,0	6,0	_,,	,_	-, '	, .	, -	
oore	υ Temp. range I: 40°C/24°C				[N/mm ²]	2,5	2,5	3,7	3,7	3,7						
ed b	Temp. range II: 80°C/50°C			τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,5	4,5	4,5	Not admissible					
flooded bore hole				τ _{Rk,seis} τ _{Rk,cr}	[N/mm²] [N/mm²]	1,6 2,0	1,9 2,5	2,7 3,5	2,7 3,5	2,7 3,5						
Temp. range III: 120°C/72°C				τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0						
				C30/37 1,04							,04					
	sing fact acked co			C40/50 1,08						,08						
.1011-016			Ψο	C50/60		1,10										
Factor	accordir	ng to	Non-cracked			10,1										
CEN/T	S 1992-	4-5	concrete Cracked	k ₈	[-]											
	1 6.2.2.3		concrete			7,2										
Concre	ete con	e failu														
	accordir		Non-cracked concrete	k _{ucr}						10	0,1					
	S 1992- 1 6.2.3.1		Cracked	le .	[-]						· · ·					
			concrete	k _{cr}							',2					
	listance			C _{cr,N}	[mm]	L					5·h _{ef}					
	istance			S _{cr,N}	[mm]	<u> </u>				3,0)∙h _{ef}					
Splittir	ng failui	re														
Edge d	listance			C _{cr,sp}	[mm]				1,0 · h _{ef}	$\leq 2 \cdot h_{ef} 2$	$2,5 - \frac{h}{h_{ef}}$	\leq 2,4 · h _e	ī			
Axial d	istance			S _{cr,sp}	[mm]					2.0	Ccr,sp					
Installation dry and wet concrete $\gamma_2 = \gamma_{inst}$						1,0					1,2					
safety factor flooded bore hole $\gamma_2 = \gamma_{inst}$								1,4				Not	admiss	sible		
Injectio	on syste	em AC	100-PRO, AC	100-PR	O Nordic	or AC	100-P	RO Ice	•		A	nnex	C3			
Applic	njection system AC100-PRO, AC100-PRO Nordic or AC100 Performances Application with reinforcing bar Characteristic values for tension loads															

Anchor size reinforcing bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø 24	Ø25	Ø28	Ø32	
Steel failure without lever arm													
Characteristic tension resistance	$V_{Rk,s}$	[kN]					0,5.	۹ _s ⋅f _{uk}					
	$V_{Rk,s,seis}$	[kN]	0,35⋅A _s ⋅f _{uk}										
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	[-]					0	,8						
Steel failure with lever arm													
Characteristic handing recistance	M ⁰ _{Rk,s}	[Nm]					1,2·V	V _{el} ·f _{uk}					
Characteristic bending resistance	M ⁰ _{Rk,s,seis}	[Nm]			No	Perforn	nance [Determi	ined (N	PD)			
Concrete pryout failure													
Factor k₃ in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]					2	,0					
Installation safety factor	$\gamma_2 = \gamma_{\text{inst}}$		1,0										
Concrete edge failure													
Effective length of anchor	I _f	[mm]	mm] $I_f = \min(h_{ef}; 8 d_{nom})$										
Outside diameter of anchor	d _{nom}	[mm]	m] 8 10 12 14 16 20 24 25 28							28	30		
Installation safety factor		1,0											

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex C4
Performances Application with reinforcing bar Characteristic values for shear loads	

Displacements for tension loads¹⁾ (threaded rod) Table C5:

Anchor size th	readed rod		M8	M10	M12	M16	M20	M24	M27	M30
Uncracked cor	ncrete									
Temperature ra	ange I 40°C/24°C									
Displacement	δ _{N0} - factor	[mm/ (N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
Displacement	$\delta_{N_{\infty}}$ - factor	[mm/ (N/mm²)]	0,034	0,033	0,037	0,045	0,052	0,060	0,065	0,071
Temperature ra	ange II 80°C/50°C									
Displacement	δ _{N0} - factor	[mm/ (N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
Displacement	$\delta_{N_{\infty}}$ - factor	[mm/ (N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature ra	ange III 120°C/72	°C								
Displacement	δ_{N0} - factor	[mm/ (N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
Displacement	$\delta_{N_{\infty}}$ - factor	[mm/ (N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Cracked concr	ete									
Temperature ra	ange I 40°C/24°C									
Displacement	δ _{N0} - factor	[mm/ (N/mm²)]	0,090	0,090	0,070	0,070	0,070	0,070	0,070	0,070
Displacement	$\delta_{N_{\infty}}$ - factor	[mm/ (N/mm²)]	0,105	0,105	0,105	0,105	0,105	0,105	0,105	0,105
Temperature ra	ange II 80°C/50°C	;								
Displacement	δ _{N0} - factor	[mm/ (N/mm²)]	0,219	0,219	0,170	0,170	0,170	0,170	0,170	0,170
Displacement	δ _{N∞} - factor	[mm/ (N/mm²)]	0,255	0,255	0,245	0,245	0,245	0,245	0,245	0,245
Temperature ra	ange III 120°C/72	°C								
Displacement	δ _{N0} - factor	[mm/ (N/mm²)]	0,219	0,219	0,170	0,170	0,170	0,170	0,170	0,170
Displacement	$\delta_{N_{\infty}}$ - factor	[mm/ (N/mm²)]	0,255	0,255	0,245	0,245	0,245	0,245	0,245	0,245

¹⁾ Calculation of the displacement

 δ_{N0} = δ_{N0} - factor \cdot τ

 $\delta_{N\infty}$ = $\delta_{N\infty}$ - factor \cdot τ

 τ = action bond stress for tension

Displacement for shear load¹⁾ (threaded rod) Table C6:

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete											
Displacement	δ_{V0} - factor	[mm/ kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
Displacement	$\delta_{V\infty}$ - factor	[mm/ kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	
Cracked conc	rete										
Displacement	$\delta_{ m V0}$ - factor	[mm/ kN]	0,120	0,120	0,112	0,103	0,093	0,084	0,076	0,069	
Displacement	$\delta_{V\infty}$ - factor	[mm/ kN]	0,180	0,180	0,169	0,154	0,140	0,125	0,115	0,104	

¹⁾ Calculation of the displacement

 δ_{V0} = δ_{V0} - factor \cdot V

 $\delta_{V\infty} = \delta_{V\infty}$ - factor · V V = action shear load

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex C5
Performances Displacements (Threaded rods)	

Table C7: Displacements for tension loads ¹⁾ (reinforcing bar)												
Anchor size reinforcing bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø 24	Ø25	Ø28	Ø32
Uncracked concrete												
Temperature r	Temperature range I 40°C/24°C											
Displacement	δ_{N0} - factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,042	0,043	0,047	0,052
Displacement	$\delta_{\text{N}_{\infty}}$ - factor	[mm/(N/mm²)]	0,034	0,033	0,037	0,041	0,045	0,052	0,057	0,061	0,071	0,075
Temperature r	Temperature range II 80°C/50°C											
Displacement	δ_{N0} - factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,103	0,104	0,113	0,126
Displacement	$\delta_{\text{N}_{\infty}}$ - factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,144	0,149	0,163	0,181
Temperature r	ange III 120°C	/72°C										
Displacement	δ_{N0} - factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,103	0,104	0,113	0,126
Displacement	$\delta_{\text{N}_{\infty}}$ - factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,144	0,149	0,163	0,181
Cracked conc	rete											
Temperature r	ange I 40°C/2	4°C										
Displacement	δ_{N0} - factor	[mm/(N/mm²)]	0,090	0,090	0,07	0,070	0,070	0,070	0,070	0,070	0,070	0,070
Displacement	$\delta_{N\infty}$ - factor	[mm/(N/mm²)]	0,105	0,105	0,105	0,105	0,105	0,105	0,105	0,105	0,105	0,105
Temperature r	Temperature range II 80°C/50°C											
Displacement	δ_{N0} - factor	[mm/(N/mm²)]	0,219	0,219	0,170	0,170	0,170	0,170	0,170	0,170	0,170	0,170
Displacement	δ_{N_∞} - factor	[mm/(N/mm²)]	0,255	0,255	0,245	0,245	0,245	0,245	0,245	0,245	0,245	0,245
Temperature r	Temperature range III 120°C/72°C											
Displacement	δ_{N0} - factor	[mm/(N/mm²)]	0,219	0,219	0,170	0,170	0,170	0,170	0,170	0,170	0,170	0,170
Displacement	$\delta_{\text{N}_{\infty}}$ - factor	[mm/(N/mm²)]	0,255	0,255	0,245	0,245	0,245	0,245	0,245	0,245	0,245	0,245

¹⁾ Calculation of the displacement

Displacement for shear load¹⁾ (reinforcing bar)

Table Co. Displacement for shear load * (reinforcing bar)												
Anchor size reinforcing bar			Ø8	Ø10	Ø12	Ø14	Ø16	Ø 20	Ø 24	Ø25	Ø 28	Ø32
Uncracked concrete												
Displacement	δ_{V0} - factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,04	0,03	0,03	0,03
Displacement	$\delta_{V\infty}$ - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04
Uncracked concrete												
Displacement	δ_{V0} - factor	[mm/(kN)]	0,120	0,120	0,112	0,108	0,103	0,093	0,083	0,081	0,074	0,064
Displacement	$\delta_{V\infty}$ - factor	[mm/(kN)]	0,180	0,180	0,169	0,161	0,154	0,140	0,126	0,122	0,111	0,097

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ - factor \cdot V

 $\delta_{V\infty} = \delta_{V\infty}$ - factor \cdot V V = action shear load

Injection system AC100-PRO, AC100-PRO Nordic or AC100-PRO Ice	Annex C6
Performances Displacements (Reinforcing bar)	

8.06.01-65/16 Z30301.16

 $[\]begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}} \text{ - factor} \cdot \tau \\ \delta_{\text{N}_{\infty}} &= \delta_{\text{N}_{\infty}} \text{ - factor} \cdot \tau \end{split}$

 $[\]tau$ = action bond stress for tension